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Abstract

We seek to describe the broad cross-section of average stock returns. We follow the APT
literature and estimate the common factor structure among a large cross-section containing
278 decile portfolios associated with 28 market anomalies. Our statistical model contains
seven common factors (with an economic meaning) and prices well both the original portfo-
lio returns and an efficient combination of these portfolios. This model clearly outperforms
the empirical workhorses in the literature when it comes to pricing this broad cross-section.
Augmenting the empirical models with new factor-mimicking portfolios, based on APT prin-
ciples, significantly improves their performance. Our results shed light on the number of
factors necessary to describe expected stock returns. Moreover, we show that there is sig-
nificant room for improving the existing multifactor models in terms of explaining the large
cross-section of stock returns (and in a way that is consistent with the APT).
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1 Introduction

For many years, price momentum (Jegadeesh and Titman (1993), Fama and French (1996))
and the value premium (Basu (1983), Rosenberg, Reid, and Lanstein (1985), and Lakonishok,
Shleifer, and Vishny (1994)) have been the traditional market anomalies, and hence the focus
of attention for newly proposed asset pricing models.! However, recent years have noticed
an explosion of new CAPM anomalies, which correspond to new patterns in cross-sectional
equity risk premia left unexplained by the baseline CAPM of Sharpe (1964) and Lintner
(1965). Specifically, Hou, Xue, and Zhang (2015b) examine in total around 80 anoma-
lies covering different broad categories: momentum, value-growth, investment, profitability,
intangibles, and trading frictions. Yet, they find that nearly one-half of these anomalies (in-
cluding those related to trading frictions) are not statistically significant and end up testing
their four-factor model over 35 portfolio sorts. Among the most prominent new patterns in
cross-sectional risk premia are a number of investment- and profitability-based anomalies.
The investment anomaly can be broadly classified as a pattern in which stocks of firms that
invest more exhibit lower average returns than the stocks of firms that invest less.? The
profitability-based anomalies refer to the evidence indicating that more profitable firms earn
higher average returns than less profitable firms.> Other pervasive CAPM anomalies include
earnings surprise (Foster, Olsen, and Shevlin (1984)), industry momentum (Moskowitz and
Grinblatt (1999)), equity duration (Dechow, Sloan, and Soliman (2004)), operating leverage
(Novy-Marx (2011)), organizational capital-to-assets (Eisfeldt and Papanikolaou (2013)),

and advertisement expense-to-market (Chan, Lakonishok, and Sougiannis (2001)).

The traditional workhorse in the empirical asset pricing literature—the three-factor model
of Fama and French (1993, 1996) (FF3 henceforth)—fails to explain the new market anoma-
lies (see, for example, Fama and French (2015), Hou, Xue, and Zhang (2015a, 2015b), and
Maio (2016a, 2016b)). Moreover, the four-factor model of Carhart (1997) (C4) does a good

!The value premium refers to the evidence showing that value stocks (stocks with high equity valuation
ratios like book-to-market, earnings-to-price, or cash flow-to-price) outperform growth stocks (low valuation
ratios). On the other, price momentum corresponds to a cross-sectional pattern where stocks with high prior
short-term returns outperform stocks with low prior returns.

2The variables that represent corporate investment can be investment-to-assets (Cooper, Gulen, and Schill
(2008)), abnormal corporate investment (Titman, Wei, and Xie (2004)), investment growth (Xing (2008)),
changes in property, plant, equipment, and inventories scaled by assets (Lyandres, Sun, and Zhang (2008)),
inventory growth (Belo and Lin (2011)), composite issuance (Daniel and Titman (2006)), net stock issues
(Pontiff and Woodgate (2008)), and different measures of accruals (Sloan (1996), Richardson et al. (2005),
and Hafzalla, Lundholm, and Van Winkle (2011)).

3The profitability measures that have been employed include return on equity (Haugen and Baker (1996)),
return on assets (Balakrishnan, Bartov, and Faurel (2010)), gross profits-to-assets (Novy-Marx (2013)),
revenue surprise (Jegadeesh and Livnat (2006)), number of consecutive quarters with earnings increases
(Barth, Elliott, and Finn (1999)), and failure probability (Campbell, Hilscher, and Szilagyi (2008)).



job in capturing price momentum, but also struggles in terms of explaining some of the
profitability- and investment-based anomalies (see Hou, Xue, and Zhang (2015b) and Maio
(2016a, 2016b) for details). In response to this gap, we have witnessed the emergence of new
multifactor models containing (different versions of) investment and profitability factors, in
particular the five-factor model of Fama and French (2015, 2016) (FF5) and the four-factor
model of Hou, Xue, and Zhang (2015a, 2015b) (HXZ4). However, several dimensions of
the broad cross-section of stock returns are still not explained by the new factor models.
In particular, the five-factor model does not account for momentum (including industry
momentum), while both of these models do not capture several profitability and investment-
based (in particular, several forms of accruals) anomalies (see Hou, Xue, and Zhang (2015a,
2015b), Fama and French (2016), and Maio (2016a, 2016b) for details on the performance

of those models for the broad cross-section).

Following such evidence, several questions naturally emerge in the empirical asset pricing
literature: How many factors do we need, and what are these factors, to describe well the
broad cross-section of stock returns?* To which dimensions of the cross-section of stock
returns are these factors more correlated? To what extent (and how) can we improve the
current multifactor models proposed in the literature in order to achieve a better description
of large-scale cross-sectional risk premia? This paper attempts at providing answers to these
questions. In order to achieve this goal, we adopt the general framework of the Arbitrage
Pricing Theory (APT) of Ross (1976). According to the APT, variables that provide a
fairly good description of the time-series variation in average stock returns should repre-
sent risk factors that help to price those same assets. Thus, the APT is an obvious asset
pricing framework to study the large cross-section of stock returns since several of the most
successful multifactor models in the literature, as those mentioned above, contain factors
that are (nearly) mechanically correlated with the testing portfolios.” Moreover, the APT
is less demanding than other asset pricing frameworks (like the ICAPM of Merton (1973))
in the sense that it relies on relative asset pricing, specifically, given the common sources of

systematic risk (factors) what should be the correct discount rates for equity portfolios.
We follow part of the relatively small empirical APT literature in terms of estimating com-

mon stock return factors by applying asymptotical principal components analysis (APCA)

to a large cross-section of stock returns (e.g., Connor and Korajczyk (1986, 1988) and Goyal,

4Cochrane (2011) asks similar questions: “Can we again account for N dimensions of expected returns
with K < N factor exposures?”.

5This is the case of the value-growth factor (HML) in relation to portfolios sorted on valuation ratios,
the momentum factor (UM D) against momentum portfolios, and the investment and profitability factors
used in Fama and French (2015, 2016) and Hou, Xue, and Zhang (2015a, 2015b) in relation to portfolios
sorted on these two variables.



Pérignon, and Villa (2008)). We employ a total of 28 anomalies or portfolio sorts, which
represent a subset of the anomalies considered in Hou, Xue, and Zhang (2015a, 2015b) for
a total of 278 decile portfolios. The estimation results show that there are seven common
factors that are statistically significant over our sample period (1972 to 2013). These seven
factors cumulatively explain around 91% of the cross-sectional variations in the 278 portfolio
returns. The first common factor basically captures the average anomaly and thus resembles
a market factor. The other six factors capture different dimensions of the large cross-section
of market anomalies. In particular, the second, third, and four factors are strongly corre-
lated with value-growth, investment, profitability, and momentum-based anomalies. This
is consistent with the role of the seven-factor model in terms of describing well this cross-
section of 278 equity portfolios. This statistical model is thus a benchmark for this specific

cross-section of stock returns, against which the existent models are compared.

We conduct cross-sectional asset pricing tests of our APT model by using the 278 equity
portfolios as testing assets. The results confirm that the seven-factor model explains about
60% of the cross-sectional variation in the risk premia associated with the 278 portfolios.
Moreover, most factor risk price estimates are statistically significant. Across categories of
anomalies, the APT does a better job in pricing value-growth and intangibles, compared to
the group of investment-based anomalies. Moreover, the model prices perfectly an efficient
combination of the original portfolios as indicated by the GLS cross-sectional R? estimates

around 100%. This result confirms that the statistical model is a successful APT.

Next, we compare our APT model to some of most popular multifactor models existent
in the literature in terms of pricing the 278 portfolios. The models include the already
mentioned FF3, C4, HXZ4, FF5, in addition to a restricted version of FF5 that excludes
HML (FF4), and the four-factor model of Pastor and Stambaugh (2003) (which includes
a stock liquidity factor). The results show that only C4 and HXZ4 offer an economically
significant explanatory power for the broad cross-section of stock returns, while the fit of
both FF5 and FF4 is quite small. Moreover, the performance of all the six empirical factor
models clearly lags behind the fit of the seven-factor APT, suggesting that these models have

a large room for improvement in terms of describing large-scale cross-sectional risk premia.

In light of such evidence, we define and estimate new empirical multifactor models to
better describe the broad cross-section of anomalies. All these models contain seven factors,
to be consistent with our benchmark APT, and represent augmented versions of C4, HXZ4,
FF5, and FF4, the best performing empirical models. The new factors in each of these models
represent factor-mimicking portfolios (spreads among extreme portfolio deciles) associated
with selected anomalies. These anomalies are those for which the original factors in each

model do a worse job in terms of describing the time-series variation in the corresponding



decile portfolio returns. Thus, our criteria for selecting the new factors relies on the APT
restriction that the risk factors should explain well the time-series variation in the returns of
the testing assets. The results show that adding the new factors improves all four empirical
models, and helps especially the performance of both FF5 and FF4 in terms of explaining
the large cross-section of stock returns. Moreover, the augmented models do a very good
job in explaining an efficient combination of the original portfolios, thus, showing that they
represent valid APTs. Therefore, the performance of the augmented empirical models is quite
similar to that of our benchmark APT. Overall, our results indicate that there is a significant
room for improving the existing empirical multifactor models in terms of explaining the large
cross-section of stock returns in a way that is consistent with the APT.

The paper proceeds as follows. Section 2 discusses the derivation and empirical implica-
tions of the APT, while in Section 3, we estimate our benchmark statistical model. Section
4 presents the asset pricing tests for our benchmark APT, whereas in Section 5 we conduct

a comparison with existing multifactor models. Section 6 concludes.

2 Theoretical background

In this section, we provide a simple derivation of the Arbitrage Pricing Theory (APT) model
of Ross (1976), which follows closely the exposition in Cochrane (2005), Chapter 9.

Consider the following time-series regression for an arbitrary risky asset ¢ = 1,..., N,

Riti1=o; + ﬁz‘,lfl,t—&—l + ...+ ﬁi,KfK,tH + €441, (1)

where R; ;11 denotes the gross return on asset 7, €; 441 is the idiosyncratic return, and J’”vj,tﬂ =
fite1 —E(fj41),7 = 1,..., K represents each of the demeaned common K factors. Since the
factors are demeaned, it follows that E(R;41) = «;.

Assume that there is a stochastic discount factor (SDF), M, 1, that prices assets in this
economy. By multiplying both sides of the regression above by M, taking unconditional

expectations, and using both E(M;+1R;+41) = 1 and E(R;;+1) = a;, we obtain:

1 E(Mt+1ﬁt+1) E(Mt+1]7Kt+1) E(Mt+15i t+1)
E(R; — = = b7 — D ’ - 5 (2
(Rizs1) E(M4q) P E(M4q) Prx E(M;1) E(My41) 2

In the derivation of the equation above we are simply using the law of one price by forcing
both sides of the regression to have the same price. In other words, the returns associated
with the risky asset ¢ and the replicating portfolio have the same price.

Now assume that idiosyncratic risk is small, Var(e; ¢+1) ~ 0. This implies that E(M;1€;441) =

4



Cov(My41,€i+1) = 0, since in the limit a very small value of Var(e;+11) means that ¢; ;41 is

not a random variable. This in turn implies:

E(Mys1 frcie1)

1 E(Mt+1j?1,t+1>
By O

B(Ripi1) — ——— ~ — i) g
) = g = T B () s

Assume also that there is a risk-free asset with gross return given by Rj;i;, where
E(Rf44+1) = 1/ E(M;4+4). This leads to the following expected return-beta equation,

E(Rit+1 — Ryi1) = Bigh + ... + Bik Ak, (4)

where

)\j = — E(Rf,t+1) E(Mt-i-lfj,t—i-l)aj =1,.., K, (5)

represents the risk price for factor j. Hence, under the statistical model above, by assuming
low idiosyncratic risk and using non-arbitrage (or more specifically, the law of one price),
we obtain a linear asset pricing model where the common factors represent risk factors that
price risky assets.

If we assume that all the factors are excess returns, E(M; 1 f;:+1) = 0, the risk price for

factor j simplifies to

A= —E(Rpi1) E[Mea (fiern — E(fie))]
= —ERp1)[E(Mig1 fie1) — E(Mysr) E(fje41)]
= E(Rjp1) E(M1) E(fje1)
= E(fjt+1) (6)

that is, the risk price for each factor equals the corresponding factor mean.

Some observations about the empirical implications of the APT are in order. First, as
shown above, one of the major assumptions of the APT is that each risky assets follows a
factor structure (linear regression), and that the amount of idiosyncratic risk is small.® This
implies that the coefficient of determination (R?) of the regression above should be large:”

Var(g; 141)

R*=1—- — 2 7
Var(RLHl) ( )

6This leads some people to classify the APT as a statistical model. Yet, as shown in this simple derivation,
there is economic content in the form of absence of arbitrage opportunities.

"Several APT frameworks assume that idiosyncratic returns are orthogonal across assets,
Cov(eii+1,€1,e41) = 0,4 # 1. Yet, as shown in this section, this assumption is not necessary to obtain
the approximate beta model (see also Chamberlain and Rothschild (1983)).



Hence, a necessary condition for a given model to be (approximately) a valid APT model
is that the time-series regressions of asset returns on the common factors produce large R?
estimates. Although the APT framework applies to any risky asset, the restriction of a high
R? limits in practice its application to equity portfolios as testing assets. The reason is that
individual stocks typically have large idiosyncratic risk, in contrast to equity portfolios, and
thus quite low R? estimates.

Second, the exposition above shows that the factors in the APT can be either traded or
non-traded. Yet, given the restriction of a large fit in the time-series regressions it follows that
plausible empirical applications of the APT should contain factors that represent excess stock
returns (zero-cost portfolios). The reason is that those factors typically are more correlated
with the testing assets (equity portfolios) than non-traded factors like macro variables (e.g.,
CPI inflation, industrial production growth, bond yields, short-term interest rates). Actually,
in some cases these large correlations are (nearly) mechanical (like the case of HM L against
portfolios sorted on the book-to-market ratio or the case of UM D in relation to momentum
portfolios). Furthermore, if the factors are excess returns, the risk price estimates cannot be
freely estimated by a cross-sectional regression and should equal the corresponding factor
means.

Third, the APT is mainly about relative asset pricing: given the factors, what should be
the correct prices (i.e., expected returns) of the other assets in the economy. Yet, the APT
does not provide an economic explanation for the risk premium associated with each original

source of systematic risk (the factors).®

3 Common factors

In this section, we estimate the common factors that summarize the information from the

broad cross-section of stock returns.

3.1 Data

The portfolio return data used in the estimation of the common factors are associated with
the most relevant market or CAPM anomalies, which represent patterns in cross-sectional
stock returns that are not explained by the baseline CAPM. We employ a total of 28 anoma-

lies or portfolio sorts, which represent a subset of the anomalies considered in Hou, Xue, and

8 Alternative asset pricing frameworks, which provide a theory of the factor risk premiums, include the
Consumption CAPM (Breeden (1979)), the Intertemporal CAPM (Merton (1973)), and the baseline CAPM
(Sharpe (1964) and Lintner (1965)).



Zhang (2015a, 2015b) for a total of 278 portfolios. Table 1 contains the list and descrip-
tion of the anomalies included in this paper. Following Hou, Xue, and Zhang (2015b), these
anomalies can be generically classified in strategies related to value-growth (BM, DUR, CFP,
EP, and REV), momentum (MOM, SUE, ABR, IM, and ABR*), investment (IA, ACI, NSI,
CEIL PIA, IG, IVC, IVG, NOA, OA, POA, and PTA), profitability (ROE, GPA, NEI, and
RS), and intangibles (OCA and OL). The portfolio returns are value-weighted and all the
groups include decile portfolios, except IM and NEI with nine portfolios each. In comparison
to the portfolio groups employed in Hou, Xue, and Zhang (2015b), we do not consider the
return on assets (Balakrishnan, Bartov, and Faurel (2010)) deciles because they are strongly
correlated with the return on equity deciles (ROE). Moreover, we use only one measure of
price momentum (MOM) and earnings surprise (SUE) since the other measures used in Hou,
Xue, and Zhang (2015b) are strongly correlated with either MOM or SUE.? We also exclude
all portfolio sorts used in Hou, Xue, and Zhang (2015b) with data that starts after 1972:01.°
All the portfolio return data correspond to Hou, Xue, and Zhang (2015b) and were obtained
from Lu Zhang. To construct portfolio excess returns, we subtract the one-month Treasury
bill rate available from Kenneth French’s website. The sample period is 1972:01 to 2013:12.

Table 2 presents the descriptive statistics for high-minus-low spreads in returns between
the last and first decile among each portfolio class. The anomaly with the largest spread
in average returns is price momentum (MOM) with a premium above 1% per month. The
return spreads associated with book-to-market (BM), ABR (abnormal one-month returns
after earnings announcements), ROE, and net stock issues (NSI) are also quite pervasive
with (absolute) means around 0.70% per month. The anomalies with lower average returns
are ABR* (abnormal six-month returns after earnings announcements), revenue surprises
(RS), abnormal corporate investment (ACI), and operating leverage (OL), all with average
return spreads around or below 0.30% (in absolute value). Price momentum is by far the
anomaly with the most volatile spread in returns (standard deviation above 7% per month),
followed by ROE, return reversal (REV), and industry momentum (IM), all three spreads
with volatilities above 5%. On the other extreme, investment growth (IG) and numbers of
consecutive quarters with earnings increases (NEI) show the least volatile return spreads
(below 3% per month).

9We exclude anomalies for which the corresponding spreads high-minus-low in returns have correlations
above 90% (in magnitude) relative to other anomalies.

10T his includes, for example, portfolios sorted on revision in analysts’ earnings forecasts (Chan, Jegadeesh,
and Lakonishok (1996)), advertisement expense-to-market (Chan, Lakonishok, and Sougiannis (2001)), R&D-
to-market (Chan, Lakonishok, and Sougiannis (2001)), failure probability (Campbell, Hilscher, and Szilagyi
(2008)), and systematic volatility (Ang et al. (2006)).



3.2 Factors estimation

To estimate the common stock return factors, we use the approximate factor model frame-
work developed by Connor and Korajczyk (1986, 1988) and widely implemented to capture
the pervasive cross-correlations present in large macroeconomic or financial panels (see Stock
and Watson (2002a, 2002b), Ludvigson and Ng (2007, 2009, 2010), Goyal, Pérignon, and
Villa (2008), Maio and Philip (2015), among others).
Consider that equity portfolio returns are driven by a finite number of r static unobserv-
able factors,
Ryt = £]0; + i, (8)

where R;; is the portfolio (i = 1,..., N) return at time t(=1,...,7); F, is the r-dimensional
vector of latent common factors for all returns at ¢; 6, is the r-dimensional vector of factor
loadings for the return on asset ¢; and ¢;; stands for the idiosyncratic i.i.d. errors, which are
allowed to have limited correlation among returns.

This model captures the main sources of variations and covariations among the N port-
folio returns with a set of r common factors (r << N). The framework is estimated using
asymptotic principal components procedure, which involves an eigen decomposition of the
sample covariance matrix. The estimated (7" x r) factors matrix F is equal to /T multiplied
by the r eigenvectors corresponding to the first r largest eigenvalues of the T' x T matrix,
RR'/ (NT), where R is a (T x N) return data matrix. The normalization F'F = I, is im-
posed, where I, is the r—dimensional identity matrix, since F and the factor loadings matrix
are not separately identifiable. The factor loadings matrix can be obtained as © =R'F /T.
For a large number of return time series this methodology can effectively distinguish noise
from signal and summarize information into a small number of estimated common factors.

To determine the value of r, which is the number of statistically significant common
factors, we use the ICy information criterion suggested by Bai and Ng (2002). We minimize
over r the following criterion,

(V) +r (N N+TT) In(min {N, T}), (9)

where V, = (NT)™! ZZJ\LI ZtT:1 <Rit — > théji>2, with Fj, denoting the j* factor es-
timate at time t. We consider a maximum set of 20 factors when estimating the optimal
T.

The estimation results show that there are seven common return factors that are statis-

tically significant over our sample period.!! Table 3 reports summary statistics of the seven

HFor robustness, we also implement the tuning-stability checkup procedure proposed by Alessi, Barigozzi,



estimated factors. We can see that none of the factors is persistent as shown by the first-
order autocorrelation coefficients around or below 0.10. This stems from the fact that stock
returns do not usually exhibit significant serial correlation. The seven factors cumulatively
explain around 91% of the total variations in the 278 portfolio returns, with the first factor
explaining the largest proportion of the cross-sectional variation in returns (around 85%).'?

As stressed in the last section, a necessary condition for a factor model to represent a valid
APT is that the time-series regressions of the testing returns on the risk factors have a large
fit in the form of large R? estimates. To confirm this proposition, we run multiple time-series

regressions for each of the 278 excess portfolio return on the seven common factors,

Riyi1—Ryppv1 = 0i+Bin Frap1+Bio b1 +08i 3 F5 i1+ Bi aFa i1+ Bi s Fs i1+ Bi6 Fo 041557 F 7 p1H€i 141
(10)
In Table 3, we report the average R? estimates (across the 278 regressions) for a regression
on the seven factors and also for regressions on subsets of factors. We can see that the average
fit of the regression including all seven factors is large (90%). Moreover, the first four factors
contribute the most for this explanatory power (89%). As a reference point, untabulated
results indicate that the CAPM produces an average R? of 84% across the 278 portfolios.
This is similar to the average explanatory ratio associated with the first APCA factor.
To understand the correlations of the estimated common factors with the raw portfolio
returns, we conduct single regressions of the 28 return spreads indicated above on each of

the factors,
Rio0441 — Ry = 0y + B Fje + g1, = 1,7, (11)

where R 10441 — Ry1.441 denotes the spread high-minus-low associated with anomaly [, =
1,...,28.

Table 4 presents the R? estimates associated with these single regressions. These es-
timates represent the square of the simple pairwise correlations between the returns and
factors. We can see that the first factor has small correlations across most of the 28 anoma-
lies. This is consistent with the evidence provided below that this factor is mainly correlated

with the usual stock market factor. The main outlier occurs for the CEI spread with a R?

and Capasso (2010) on the ICy criteria, as it is shown to outperform the original estimators in finite samples.
The tests results indicate the presence of eight significant common return factors. Yet, since the last estimated
factors explain a relatively small variation of the cross-section of stock returns, as shown below, we opted to
work with seven factors.

12In related work, Clarke (2016) extracts three common factors from the cross-sectional of stock returns.
However, the procedure in that paper differs significantly from the one used here. First, the principal
components are estimated from 25 portfolios sorted on expected returns rather than the original anomaly
variables. Second, he uses seven anomaly variables in the estimation of individual expected stock returns,
which represents a significantly smaller cross-section than the 28 anomalies used in our study.



of 24%. On the other hand, F, is strongly correlated with the value-growth anomalies as
indicated by the R? estimates above 40% for the spreads associated with BM, CFP, EP,
and DUR. This factor is also significantly correlated with several investment (IA, CEI, and
NSI) and accruals (POA and PTA) anomalies. This indicates that there is some degree of
comovement among the value- and investment-based anomalies.

The third factor is heavily correlated with the profitability-based anomalies as shown by
the R? estimates between 21% (GPA) and 62% (ROE). Moreover, this factor is also correlated
with the BM and REV return spreads (R? close to 30%). The fourth factor mainly captures
price momentum as indicated by the explanatory ratios around 60% for both the MOM
and IM spreads. Fj is mainly correlated with OL (R? of 35%) and OA (23%), while the
sixth factor loads more significantly on the PTA spread (30%). The R? estimates associated
with the seventh factor are significantly smaller in comparison with the other factors, with
the largest values occurring for the NOA and OL return spreads (8%). Hence, the last
three factors mainly capture operating leverage, some forms of accruals, and PIA. In sum,
the results from Table 4 suggest that to a large degree the seven common factors capture
different dimensions of the large cross-section of market anomalies. This is consistent with
the role of the seven-factor model in terms of describing well this cross-section of 278 equity

portfolios.

4 Asset pricing tests

In this section, we estimate our APT model for the broad cross-section of stock returns.

4.1 Methodology

To test our APT for the broad cross-section of stock returns, we use the two-step time-
series/cross-sectional regression procedure employed in Black, Jensen, and Scholes (1972),
Jagannathan and Wang (1998), Cochrane (2005), Brennan, Wang, and Xia (2004), Campbell
and Vuolteenaho (2004), and Maio and Santa-Clara (2016), among others.™® In the first step,
the factor betas are estimated from the time-series multivariate regressions for each of the

testing portfolios,
vy = Bf + €41, (12)

13Since the common factors estimated by APCA do not represent excess stock returns we can not use
time-series regressions in order to test the asset pricing restrictions (see, for example, Fama and French
(1993, 1996) and Cochrane (2005), Chapter 12).

10



where ry,; is a vector of excess portfolio returns, 3(N x K) is a matrix of K factor loadings
for the N test assets, f;11(K x 1) is a vector of factor realizations, and &;.1(N x 1) is the
vector of return disturbances.

In the second step, the K-factor APT is estimated by an OLS cross-sectional regression,
r=06A+ a, (13)

where T(IV x 1) is a vector of average excess returns, A(K x 1) is a vector of risk prices, and
a(N x 1) is the vector of pricing errors.

The t-statistics associated with the factor risk price estimates are based on Shanken’s
standard errors (Shanken (1992)), which incorporate a correction for the estimation error in
the factor loadings. We do not include an intercept in the cross-sectional regression, since
we want to impose the economic restrictions associated with each factor model. If the APT
is correctly specified, the intercept in the cross-sectional regression should be equal to zero.'*

To gauge the fit of each model, we compute the cross-sectional OLS coefficient of deter-

mination, Varx (@)
ary(Qy;

a VarN(Ri - Rf)’

Rops =1 (14)
where Vary(-) stands for the cross-sectional variance. R, ¢ represents the fraction of the
cross-sectional variance of average excess returns on the testing assets explained by the
factor loadings associated with a given model. Since we do not include an intercept in the
cross-sectional regression, this R? measure can assume negative values. A negative estimate
means that the regression including the factor loadings (associated with a given model) as
regressors does worse than a simple regression containing just an intercept (see Campbell
and Vuolteenaho (2004)).'?

An alternative empirical method to test the factor models consists of estimating a GLS

cross-sectional regression in the second step,

»iF = (2-%) A+ a, (15)

14 Another reason for not including the intercept in the cross-sectional regressions is that often the factor
loadings associated with equity portfolios are very close to each other, creating a multicollinearity problem
in the cross-sectional regression (see, for example, Jagannathan and Wang (2007)). Moreover, excluding the
intercept from the cross-sectional regression enables consistency with the time-series regression approach,
which applies to models where all factors are excess returns. Specifically, the time-series intercepts (alphas)
correspond to the pricing errors from an implied cross-sectional regression without intercept and where the
risk price estimates are equal to the factor means (see Cochrane (2005), Kan, Robotti, and Shanken (2013),
and Maio (2016a)).

15Similar R? measures are used in Jagannathan and Wang (1996), Lettau and Ludvigson (2001), Campbell
and Vuolteenaho (2004), Yogo (2006), Maio and Santa-Clara (2012, 2016), Maio (2013), Lioui and Maio
(2014), among others.
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where ¥ = E(e€)) denotes the variance-covariance matrix associated with the residuals from
the time-series regressions (see Cochrane (2005), Shanken and Zhou (2007), Lewellen, Nagel,
and Shanken (2010), among others). Under this approach, the testing assets with a lower
variance of the time-series residuals receive more weight in the cross-sectional regression.
Thus, unlike the OLS regression, the GLS regression attempts to price as best as possible an
efficient (minimum variance) combination of the testing portfolios rather than the original
returns. This means that we are no longer pricing the original portfolios, which frequently
have an economic interest attached as is the case in this paper (see Cochrane (2005), Chapter
12 and Ludvigson (2013) for a detailed discussion).

To assess the fit of each model for the repackaged portfolios, we compute the cross-

sectional GLS coefficient of determination,

&Y 'a

2 _q_os o
Rérs iy i

(16)
where r* denotes the N x 1 vector of (cross-sectionally) demeaned average excess returns.
This metric measures the fraction of the cross-sectional variation in risk premia among the
“transformed” portfolios explained by the factors associated with a given model. Thus, a
high value of R%; ¢ means that a combination of the K factors is close to the mean-variance
frontier constructed from the testing portfolios (see Kandel and Stambaugh (1995), Cochrane
(2005), and Lewellen, Nagel, and Shanken (2010)).

4.2 Results

The results for the asset pricing tests of the seven-factor model, as well as the nested models,
based on the OLS cross-sectional regression approach are displayed in Table 5. The testing
assets are the 278 equity portfolios. The seven-factor APT model explains about 60% of the
cross-sectional variation in the equity risk premia among the 278 portfolios. This represents
a large fit given the large dimension of the cross-section and the high number of anomalies
considered. Regarding the nested models, we can see that the fit increases almost monotoni-
cally as we add one factor consecutively: the R? estimates increase from -46% for the model
including only the first APCA factor (F3) to 55% for the model containing the first six com-
mon factors. Since the first factor represents basically a market factor (as discussed below),
these results are consistent with previous evidence showing that the baseline CAPM has a

negative fit when it comes to explain these market anomalies.'® In fact, untabulated results

16When tested on portfolios like those used in this paper, the CAPM typically produces negative RQO LS
estimates (see Campbell and Vuolteenaho (2004), Yogo (2006), Maio and Santa-Clara (2012) Maio (2013,
2016), among others). This means that the model performs worse than a trivial model that predicts constant
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show that the CAPM produces an explanatory ratio of -49%, which represents basically the
same fit as that produced by the one-factor APT.

Turning to the risk price estimates, it turns out that the estimates for \;, As, Ay, and g
are consistently negative, while the estimates for A3, A5, and \; are always positive. Most
of the risk price estimates are strongly significant (1% level). The exceptions are A3, where
there is significance at the 5% or 10% level, and A5 in which case the estimates are not
significant at the 10% level. This suggests that Fj is less relevant than the other factors in
terms of explaining the broad cross-section of expected stock returns.

In Table 6, we present the OLS risk price estimates when the seven-factor APT is tested
on each of five groups of anomalies considered in Section 3: value-growth, momentum,
profitability, investment, and intangibles. The objective is to assess the relative explanatory
power of the APT for different types of anomalies. The results show that the fit of the
APT is large across the five groups of anomalies: the explanatory ratios vary between 62%
(investment anomalies) and 89% (value-growth). Thus, the model does relatively worse
in explaining the investment-based anomalies, however, this group has significantly more
anomalies than the other groups (see Table 1) and thus represents a bigger hurdle for the
APT. The risk price estimates for the seven factors have generally the same sign as in the
joint estimation with the 278 portfolios. The few exceptions are A5 in the estimation with the
investment anomalies and A7 in the estimation with intangibles, which change sign relative to
the benchmark case. Yet, in both cases there is no statistical significance for those estimates.
Moreover, the statistical significance of the risk price estimates tends to be weaker than in
the full-sample regression as a result of the lower statistical power in the sub-sample tests
(fewer cross-sectional observations).

Next, we focus on the asset pricing tests based on the GLS cross-sectional regression
approach. Table 7 presents the results for the full cross-section of 28 market anomalies.
We can see that the seven-factor model, and the nested specifications, have a large fit for
the transformed portfolios. Indeed, apart from the one-factor APT, which has a negative
explanatory ratio, all the remaining six specifications produce R%; ¢ estimates around 100%.
This indicates that different combinations of the common estimated factors are approxi-
mately mean-variance efficient.

The risk price estimates have the same signs as the OLS counterparts, and those estimates
are in most cases significant at the 1% level. The exceptions are A3 (significant at the 10%
level) and A5 (highly insignificant), which goes in line with the results from the OLS cross-
sectional regressions. The large fit of the APT for the transformed portfolios is not totally

surprising. As discussed above, the GLS cross-sectional regression attempts to price as best

average returns in the cross-section of equity portfolios.
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as possible testing portfolios that have low idiosyncratic risk. Under the APT framework,
the common risk factors determine an approximate factor structure for (at least some of the)
testing returns, that is, the amount of idiosyncratic risk is quite small for those portfolios.
This implies that the APT model will do a very good job in pricing testing assets with
low idiosyncratic risk, and the GLS regression assigns a larger weight for those portfolios,
which receive (nearly) zero pricing errors (thus producing very large R%, ¢ estimates). Hence,

another sign of a successful APT is to achieve a large R%; ¢ value.

The GLS risk price estimates associated with the seven-factor model across the groups
of anomalies are presented in Table 8. The GLS explanatory ratios assume high values,
varying between 66% (intangibles) and 91% (value-growth). Thus, the model does a better
job in explaining an efficient transformation of the value-related anomalies in comparison to
other portfolios. The fact that these estimates are below one stems from the fact that the
factors were constructed from the full set of 28 anomalies rather than estimating a different
common set of factors for each group of anomalies. The R%; ¢ estimates tend to be slightly
higher than the OLS explanatory ratios across most categories. The exceptions are for the

profitability and intangibles groups, yet the difference in fit is not large.

Overall, the results of this section indicate that the seven-factor model, estimated by
APCA, does a good job in describing the cross-section of 278 equity portfolios considered in
this study.

5 Relation to multifactor models

In this section, we compare our APT model to some of most popular multifactor models
existent in the literature. Following Section 2, we restrict the analysis to models where all the
factors represent excess stock returns (zero-cost portfolios). Since the theoretical background

of these models is not totally clear, we designate these factor models by “empirical” models.'”

17Specifically, the models proposed by Fama and French (2015, 2016) and Hou, Xue, and Zhang (2015a,
2015b) both contain profitability and investment risk factors. However, while Fama and French (2015)
motivate their five-factor model based on the present-value valuation model of Miller and Modigliani (1961),
it turns out that Hou, Xue, and Zhang (2015b) rely on the g-theory of investment. On the other hand, Maio
and Santa-Clara (2012) and Cooper and Maio (2016) provide evidence that several of the factors included
in the models analyzed in this paper are consistent with the Merton’s ICAPM (Merton (1973)).
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5.1 Factor models

We employ five multifactor models widely used in the cross-sectional asset pricing literature.
The first model is the Fama and French (1993, 1996) three-factor model (FF3 henceforth),

E(Rit+1 — Ryi1) = ABiv + AsmsBismB + AumnBinmr, (17)

where A\ys, Asarp, and Ay denote the risk prices corresponding to the market, size (SM B),

and value (HM L) factors, respectively.
The second model is the four-factor model of Carhart (1997) (C4), which incorporates a

momentum factor (UM D, up-minus-down short-term past returns) to the FF3 model:
E(R; 111 — Rygv1) = ABivt + AsusBisvp + AanvrBi v + AvavpBiump- (18)

Next, we estimate the four-factor model of Pastor and Stambaugh (2003) (PS4), which
replaces UM D by a stock liquidity factor (LIQ):

E(Rii1 — Rrie1) = AufBiv + AsuBBisvs + AamnBimmr + AnioBiLig- (19)

The fourth model is the four-factor model proposed by Hou, Xue, and Zhang (2015a,
2015b) (HXZ4). This model adds an investment factor (I A, low-minus-high investment-to-
assets ratio) and a profitability factor (ROFE, high-minus-low return on equity) to the usual

market and size (M E) factors:'®
E(Rii11 — Rriv1) = AuBiv + AveBive + Aabira + AroeBi rok- (20)

The fifth model is the five-factor model of Fama and French (2015, 2016) (FF5), which
adds an investment (C'M A, low-minus-high asset growth) and a profitability (RM W, high-
minus-low operating profitability) factor to the FF3 model:

E(Rit+1—Rypi1) = AuBim +Asv=Bisv + AamnBi i +Aevabioma+ Arvw Bi raviw -

(21)
Both CM A and RMW are constructed in a different way than the corresponding investment
and profitability factors from Hou, Xue, and Zhang (2015b)." In addition, both SM B* and

HML* are constructed from different portfolio sorts than the original size and value factors

18The size factor employed in Hou, Xue, and Zhang (2015b) is constructed in a slightly different way than
SMB.
19See Fama and French (2015) and Hou, Xue, and Zhang (2015b) for details.
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of Fama and French (1993).2
Finally, we estimate a restricted version of FF5 that excludes the HM L* factor (FF4):

E(Rit+1 — Rri1) = AuBiv + Asvp=Bismss + AemaBioma + Xrvw B rvw - (22)

This follows previous evidence showing that the value factor is redundant within the FF5
model (see Fama and French (2015, 2016) and Hou, Xue, and Zhang (2015a)).

5.2 Data

The data on the equity factors, RM, SMB/SMB*, HML/HML*, UMD, CMA, and
RMW are obtained from Kenneth French’s data library, while L1Q) is retrieved from Robert
Stambaugh’s webpage. The data associated with M E, IA, and ROE are obtained from
Lu Zhang. The descriptive statistics for the equity factors are presented in Table 9. The
factor with the largest mean is UM D (0.71% per month), followed by ROE and RM, both
with means above 0.50% per month. The factors with the lowest average are SM B and
SM B* (around 0.20% per month), which confirms previous evidence that the size premium
has declined in the last decades. The most volatile factors are the equity premium and the
momentum factor, with standard deviations above 4.5% per month. On the other hand,
the investment-based factors (I A and C'M A) are the least volatile, with standard deviations
slightly above 1.8% per month. All the factors have very low serial correlation, as shown by
the small first-order autoregressive coefficients (below 20% in all cases).

Table 10 displays the pairwise correlations among the different equity factors. The differ-
ent versions of the size (SM B, SM B*, and M E) and value (HM L and HM L*) factors are
strongly correlated as indicated by the correlations quite close to one. We can also observe
a similar pattern for the asset growth factors (IA and CMA), as shown by the correla-
tion of 0.90. On the other hand, the two profitability factors (ROE and RMW') show a
smaller correlation (0.67). Both investment factors are positively correlated with the value
factors (estimates around 0.70). On the other hand, ROFE is positively correlated with UM D
(0.50), but the same does not occur with RMW . Hence, these results suggest that the two

profitability factors measure different types of risks.

5.3 Correlation with APCA factors

Table 11 shows the correlations of each of the seven APCA factors against the 12 equity

factors presented above. Since the APCA factors represent a rotation of the original portfolio

20See Fama and French (2015) for details.

16



returns, the signs of the correlations are irrelevant and only the magnitudes matter. As
expected, F} has a large correlation with the aggregate equity premium (-0.99), thus the
first principal component represents mainly a market factor. The second factor shows the
largest correlations with the value (-0.79) and investment (above 0.60 in magnitude) factors.
F3 is strongly correlated with the three size factors and the two profitability factors with
correlations above 0.50 (in magnitude) in all cases. The fourth factor is mainly correlated
with the momentum factor as indicated by the correlation of -0.80. Fj is especially correlated
with the three size factors, while the sixth factor has a larger comovement with the two
investment factors. The correlations between F» and the equity factors are smaller than for
the first six APCA factors, with the largest comovement occurring with the two value factors
(around 0.20).

These results are largely in line with the evidence from Table 4 above. Specifically, the
second APT factor is a mix of value and investment factors, while F3 is a mix of size and
profitability factors. On the other hand, the fourth factor basically captures momentum,
while Fg is correlated with some investment-based strategies. Furthermore, the fact that
both F3 and Fj are correlated with the size factors suggests that size plays an important role
within several of these market anomalies. This is consistent with the evidence provided in
Fama and French (2008) showing that several market anomalies are more important among

small stocks.

To further understand these correlations, we regress the empirical factors on our seven
estimated APT factors. Specifically, in the case of HM L we run the following multivariate

regression,

HML;y = 6umr + BamreiFiy1 + Bavr oo + BamrsFs i1 + BampaFair1 + Bunr s Fs 41

+BumreF6+1 + Bunvn,rFriv + €nmritt, (23)

and similarly for the remaining factors.

The results for the multiple regressions are reported in Table 12. We can see that the
seven APT factors explain a large fraction of the time-series variation in each of the empirical
factors. The main outlier is the liquidity factor, with a R? of only 5%, thus showing that
this factor does a poor job in helping capturing the broad cross-section of stock returns.
Apart from this isolated case, the R? estimates vary between 65% (regression for RMWV)
and 99% (regression for RM). The large fit in the regression for the market factor comes
mainly from the large correlation with Fj, as shown above. Apart from the market factor,
the two value factors as well as the momentum factor show the largest explanatory power

from the estimated factors with explanatory ratios above 80%. Comparing among related
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equity factors, we can see that the seven APCA factors are more correlated with ROE than
RMW (R? of 74% versus 65%), while the regression associated with C'M A shows a slightly
larger fit than the model corresponding to A (75% versus 70%).

Apart from the already mentioned case of LI(), most of the slopes associated with the
APT factors are statistically significant at the 5% level. Among the exceptions, the loadings
associated with Fjy, F5, and Fg are not significant in the regressions for both HM L and
HML* and the same happens to F3, Fy, and F7 in the regression for IA. Moreover, the
coefficients associated with F; are not significant in the regressions for RMW and CMA,
confirming the weaker average correlation of the seventh APT factor with the empirical
factors, as shown in Table 11. Overall, the results from the multiple regressions show that

there is a large degree of comovement between the empirical and the APT factors.

5.4 Asset pricing tests

We test the multifactor models presented above for the broad cross-section of stock returns.
We use the same empirical approach as for the APT model estimated in the last section.
Furthermore, and following Maio (2016a) (see also Cochrane (2005)), we also compute the

“constrained” cross-sectional R? for the empirical models:

. Val"N(dZ‘7c)
Vary(R; — Ry)’

R =1 (24)
This metric is similar to R%; 4, but it is based on the pricing errors (&; ¢) from a “constrained
regression” that restricts the risk price estimates to be equal to the respective factor means.
Indeed, when all the factors in a specific model represent excess stock returns (as is the
case with the models in this section), the factor risk price estimates should be equal to the
respective factor means.

For example, in the case of C4, these pricing errors are obtained from the following

equation,

R; — Ry = RMB; ps + SM BB sy + HMLB; gy, + UMDB; yvp + o, (25)

where RM, SMB, HML, and UMD denote the sample means of the market, size, value,
and momentum factors, respectively.

The OLS risk price estimates for the empirical models are presented in Table 13. The
results show that the best performing model for the broad cross-section of stock returns is C4
with R%; ¢ and R% estimates of 49% and 44%, respectively. The HXZ4 model also produces

a positive explanatory power as indicated by the R%; ¢ and R% estimates of 42% and 29%,
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respectively. The fact that RZ is lower than the OLS counterpart by more than 10 points
reveals that some of the OLS factor risk price estimates associated with HXZ4 significantly
differ from the correct estimates (factor means).

In comparison with these two four-factor models both FF5 and FF4 register a rather
modest fit for the cross-sectional equity premia as indicated by the R% estimates of 11%
and 5%, respectively. The corresponding OLS explanatory ratios are around 20% for both
models, thus indicating that some of the OLS risk price estimates in these two models are
incorrect. On the other hand, both FF3 and PS4 register an even weaker performance as
indicated by the negative values of R%, which means that these two models perform worse
than a trivial model containing just an intercept. The results from Table 13 also show
that the performance of the empirical models clearly lags behind the fit of the seven-factor
APT estimated in the last section. This suggests that these models still have room for
improvement in terms of describing this cross-section of stock returns.

The results associated with the GLS cross-sectional regressions are presented in Table
14. These results show a different picture than the OLS counterparts. The best performing
model is still C4 by a good margin with a R%; ¢ of 39%. However, the fit of the remaining
five models is relatively even with explanatory ratios varying between 16% (HXZ4) and
22% (FF5). Hence, most factor models have an approximate performance when it comes to
price an efficient combination of the testing portfolios. These results also illustrate that the
performance of asset pricing models can change widely in OLS versus GLS cross-sectional
approaches to estimate factor risk premia. On the other hand, in contrast to our benchmark
APT, all R%, 4 estimates are clearly below one. This suggests that there is substantial room

for improvement for these empirical models to become successful APT applications.

5.5 Improving the factor models

The results from the last subsection suggest that there is a significant margin for improvement
of the empirical models in terms of describing the broad cross-section of stock returns and
representing valid APT candidates. In light of this evidence, in this subsection we augment
these models with new factors to improve the fit for the broad cross-section. To maintain
focus, we restrict the analysis in this subsection to C4, HXZ4, FF5, and FF4.

The choice of the new factors relies on APT arguments. Specifically, we use factors related
to anomalies that have a relatively weak correlation with the existing empirical factors. For
this goal, we run time-series regressions of the return spreads associated with each of the
28 market anomalies on each of the four factor models. The R? estimates of these multiple

regressions are presented in Table 15. Then we pick the anomalies with lowest R? for each
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model subject to the constraint that the anomalies are associated with different categories
(as indicated in Table 1) to avoid excessive overlapping among the factors on a given model.
Each of the new models contains seven factors to be consistent with our benchmark APT.

Hence, we estimate the follow augmented version of C4 (C4*), model,

E(Rit+1 — Rfi1) = AuBiv + AsmsBisvs + AumnBipmrn + AumpBivmp
+AapaBiara + dorBior + AoaBioa, (26)

where A\gpa, Aor, and Apa represent the risk prices associated with new factors corresponding
to the gross profits-to-assets (GPA), operating leverage (OL), and operating accruals (OA)
anomalies.

Similarly, the augmented HXZ4 (HXZ4*) is given by

E(Rit+1—Rypi+1) = AuBi+AmeBi mE+A148i 14+ AroELi RoOEFAaBRBi, ABRF 0L Bior+AN0 AL NO A,
(27)
where Aapr and Aypa represent the risk prices associated with new factors corresponding
to abnormal stock returns around earnings announcements (ABR) and net operating assets
(NOA).
Next, the augmented FF5 (FF5*) incorporates a factor related to abnormal corporate
investment (ACI) (in addition to ABR):

E(Rit+1 — Rri1) = AuBiv + AsvpBisv + AamrsBiamns + Aemabicma
+Armw Bi rmaw + AaBrBiasr + AaciBiact. (28)

Finally, we add factors related to NOA, revenue surprise (RS), and ABR to the FF4
model (FF4%):

E(Rit+1 — Rriv1) = AuBiv + AsvBisvps + AemaBicoma + Arvw Bi pmw

+AaBrBiABR + ANoaBiNoa + ArsBi Rrs- (29)

The GPA, OL, ABR, and RS factors represent the return spreads high-minus-low as-
sociated with the corresponding decile portfolios, while the OA, NOA, and ACT represent
low-minus-high return spreads for the corresponding anomalies.

The results for the OLS risk price estimates associated with the augmented models are
shown in Table 16. We can see that the performance of all models rises significantly by adding
the new factors, with R% estimates that vary between 43% (HXZ4*) and 57% (C4*). The

increase in fit is especially notable in the cases of FF5 and FF4 (around 40 percentage points).
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Furthermore, the best performing of the augmented models is C4* thus preserving the
dominance of C4 in the case of the original models. However, while HXZ4 clearly outperforms
both FF5 and FF4, it turns out that HXZ4*, FF5*, and FF4* have a similar performance,
with the later showing a marginal dominance. We can also see that the performance of C4*
is only marginally smaller than the seven-factor APT (57% versus 66%). Turning to the
risk price estimates, we can see that the risk price estimates associated with the new factors
are statistically significant in most cases. The exceptions are Agpa (within C4*) and Agg
(within FF4*) while both Ao and Ayoa in HXZ4* are marginally significant (at the 10%
level).

The results for the GLS risk premia estimates are displayed in Table 17. We can see
that all four models produce R%, ¢ estimates around one, which indicates a sharp increase
in fit relative to the original models. Hence, the new factors do a very good job in pricing
the transformed portfolios. These results are not totally surprising since the new factors are
highly correlated with some of the testing portfolios, thus the GLS cross-sectional regression
will assign a large weight to those same portfolios. In other words, the large R%; ¢ values
show that the augmented factor models represent successful APT applications, similarly to
the seven-factor models, and unlike the original factor models.

Overall, these results show that adding the new factors improves all models, and helps
especially the performance of both FF5 and FF4 in terms of explaining the large cross-
section of stock returns. Moreover, the augmented models do a very good job in explaining
an efficient combination of the original portfolios. Therefore, there is a significant room
for improving the existing empirical multifactor models in terms of explaining the large

cross-section of stock returns in a way that is consistent with the APT.

6 Conclusion

Recent years have noticed an explosion of new market anomalies, and some of the most
prominent multifactor models in the empirical asset pricing literature fail to describe well
the large cross-section of stock returns. Following such evidence, several questions naturally
emerge in the literature: How many factors do we need, and what are these factors, to
describe well the broad cross-section of stock returns? To which dimensions of the cross-
section of stock returns are these factors more correlated? To what extent (and how) can we
improve the current multifactor models proposed in the literature in order to achieve a better
description of large-scale cross-sectional risk premia? This paper attempts at providing
answers to these questions. In order to achieve this goal, we adopt the general framework of
the Arbitrage Pricing Theory (APT) of Ross (1976).
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We follow part of the relatively small empirical APT literature in terms of estimating com-
mon stock return factors by applying asymptotical principal components analysis (APCA)
to a large cross-section of stock returns. We employ a total of 28 anomalies or portfolio sorts,
which represent a subset of the anomalies considered in Hou, Xue, and Zhang (2015a, 2015b)
for a total of 278 decile portfolios. The estimation results show that there are seven common
factors that are statistically significant over our sample period (1972 to 2013). These seven
factors cumulatively explain around 91% of the cross-sectional variations in the 278 portfolio
returns. The first common factor basically captures the average anomaly and thus resembles
a market factor. The other six factors capture different dimensions of the large cross-section
of market anomalies. In particular, the second, third, and four factors are strongly correlated

with value-growth, investment, profitability, and momentum-based anomalies.

We conduct cross-sectional asset pricing tests of our APT model by using the 278 equity
portfolios as testing assets. The results confirm that the seven-factor model explains about
60% of the cross-sectional variation in the risk premia associated with the 278 portfolios.
Moreover, most factor risk price estimates are statistically significant. Across categories of
anomalies, the APT does a better job in pricing value-growth and intangibles, compared to
the group of investment-based anomalies. Moreover, the model prices perfectly an efficient
combination of the original portfolios as indicated by the GLS cross-sectional R? estimates

around 100%. This result confirms that the statistical model is a successful APT.

Next, we compare our APT model to some of most popular multifactor models existent in
the literature in terms of pricing the 278 portfolios. The results show that only the four-factor
models of Carhart (1997) and Hou, Xue, and Zhang (2015a, 2015b) offer an economically
significant explanatory power for the broad cross-section of stock returns, while the fit of
the five-factor model of Fama-French (2015, 2016) (and a restricted four-factor version that
excludes HM L) is quite small. Moreover, the performance of all the empirical factor models
clearly lags behind the fit of the seven-factor APT, suggesting that these models have a large

room for improvement in terms of describing large-scale cross-sectional risk premia.

In light of such evidence, we define and estimate new empirical multifactor models to
better describe the broad cross-section of anomalies. All these models contain seven fac-
tors, to be consistent with our benchmark APT. The new factors in each of these models
represent factor-mimicking portfolios (spreads among extreme portfolio deciles) associated
with selected anomalies. The results show that adding the new factors improves all four
empirical models, and helps especially the performance of the five- and four-factor models
of Fama-French (2015, 2016) in terms of explaining the large cross-section of stock returns.
Moreover, the augmented models do a very good job in explaining an efficient combination

of the original portfolios, thus, showing that they represent valid APTs. Therefore, the
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performance of the augmented empirical models is quite similar to that of our benchmark
APT. Overall, our results indicate that there is a significant room for improving the existing
empirical multifactor models in terms of explaining the large cross-section of stock returns

in a way that is consistent with the APT.
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Table 2: Descriptive statistics for spreads in returns
This table reports descriptive statistics for the “high-minus-low” spreads in returns associ-
ated with different portfolio classes. See Table 1 for a description of the different portfolio
sorts. The sample is 1972:01-2013:12. ¢ designates the first-order autocorrelation coefficient.

Mean (%) Stdev. (%) Min. (%) Max. (%) 0]

BM 0.69 4.86 —14.18 20.45 0.11
DUR —0.52 4.34 —21.38 15.77 0.09
CFP 0.49 4.66 —18.95 16.26 0.02
EP 0.58 4.83 —15.47 22.53 0.02
REV —0.41 5.21 —32.99 18.08 0.06
MOM 1.17 7.21 —61.35 26.30 0.05
SUE 0.44 3.05 —14.27 12.09 —0.00
ABR 0.73 3.17 —15.80 15.32 —0.10
M 0.54 5.09 —-33.33 20.27 0.05
ABR* 0.30 2.08 —10.45 9.86 -0.01
ROE 0.75 5.28 —26.37 29.30 0.16
GPA 0.34 3.36 —13.55 12.35 0.04
NEI 0.36 2.79 —12.10 12.21 0.00
RS 0.30 3.46 —12.85 20.08 0.07
IA —0.42 3.62 —14.39 11.83 0.04
ACI —0.26 3.21 —18.13 13.93 0.13
NSI —0.69 3.28 —20.47 12.88 0.10
CEI —0.55 4.06 —16.34 17.94 0.06
PIA —0.49 3.00 —10.37 8.60 0.08
IG —0.38 2.83 —12.81 9.67 0.07
IvC —0.43 3.19 —12.21 11.64 0.06
IVG —0.36 3.15 —9.69 12.04 0.07
NOA —0.39 3.11 —14.26 13.45 0.02
OA —0.27 3.10 —10.39 12.81 —0.01
POA —0.43 3.12 —11.84 19.87 0.06
PTA —0.40 3.38 —11.25 19.13 0.01
OCA 0.55 3.13 —13.68 13.60 —0.02
OL 0.39 3.86 —10.34 17.37 0.11

31



Table 3: Descriptive statistics for common factors
This table reports descriptive statistics for the common factors (Fj,j = 1,...,7) estimated from
278 equity portfolios. ¢ designates the first-order autocorrelation coefficient. R? represents the
cumulative proportion of the cross-sectional variance in the raw portfolio returns explained by the
factors Fy to Fj. R? denotes the average R? among time-series regressions of the 278 portfolio
returns on an increasing number of factors as regressors, for example the column labeled F3 corre-

sponds to a regression that contains F, F5, and F3 as regressors. The sample is 1972:01-2013:12.

Fy Fy E3 Fy Fy Es Fy
¢ 006 0.06 0.04 0.03 0.05 0.07 0.11
RJQ. 0.85 087 088 089 090 090 091
R? 085 0.87 088 0.89 0.89 0.90 0.90

Table 4: Anomalies and common factors
This table reports R? estimates from single regressions of return spreads onto the estimated common
factors (F}). The “high-minus-low” spreads in returns are associated with 28 market anomalies.

See Table 1 for a description of the different portfolio sorts. The sample is 1972:01-2013:12.

B B F, Fy F, Fy
BM 0.0l 046 026 0.02 0.00 0.02 0.01
DUR 0.2 041 0.15 0.01 0.1 0.02 0.03
CFP 0.05 051 0.1 0.04 0.00 0.04 0.04
EP 003 052 0.06 0.0l 0.03 004 0.06
REV  0.00 0.12 029 0.00 002 0.19 0.02
MOM 0.02 0.01 0.16 0.64 0.01 0.01 0.01
SUE 0.3 0.0l 0.07 011 001 0.03 0.02
ABR 0.0l 0.2 002 013 000 0.01 0.01
IM 0.0l 00l 008 060 001 0.00 0.01
ABR* 0.00 0.07 0.01 021 0.00 0.01 0.04
ROE 0.08 0.02 0.62 0.00 0.02 0.02 0.00
GPA 0.0 0.06 0.21 0.03 012 001 0.01
NEI 0.00 0.12 040 0.03 0.04 0.00 0.00
RS 0.00 0.14 0.33 001 0.02 0.00 0.00
IA 005 030 0.0l 0.0 0.0l 018 0.00
ACI  0.00 0.03 0.00 0.07 0.02 0.02 0.00
NSI  0.06 0.20 0.10 0.00 0.00 0.01 0.03
CEI 024 035 0.04 000 002 0.00 0.02
PIA  0.04 006 0.1 001 0.05 030 0.01
IG  0.02 0.3 0.00 0.0l 0.00 0.14 0.00
IVC  0.03 003 0.03 004 012 017 0.01
IVG  0.04 0.16 0.00 0.02 0.10 0.08 0.00
NOA 0.00 0.09 003 0.0l 0.0l 0.12 0.08
OA 001 0.02 0.00 0.04 023 000 0.00
POA 0.04 0.23 0.00 0.0l 008 004 0.01
PTA 0.08 022 0.02 0.0l 002 0.09 0.02
OCA 0.07 0.04 011 004 0.10 0.02 0.00
OL 0.0l 001 005 0.02 0.35 0.04 0.08
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Table 5: APT model: OLS factor risk premia estimates

This table reports the factor risk price estimates for the APT seven-factor model (and corresponding nested
models). The common factors are estimated from APCA applied to 278 equity portfolios. The empirical
method is the two-step regression approach where the second step consists of an OLS cross-sectional regression
of average portfolio excess returns on factor betas. The testing assets represent 278 portfolios associated
with 28 portfolio sorts. See Table 1 for a description of the different portfolio sorts. A; denotes the risk price
estimate (in %) for the jth common factor (F;). Below the risk price estimates are displayed t-statistics
based on Shanken’s standard errors (in parentheses). The column labeled R%; ¢ denotes the cross-sectional
OLS R2. The sample is 1972:01-2012:12. Underlined and bold ¢-ratios denote statistical significance at the
5% and 1% levels, respectively.

A1 X2 X3 A X5 Ao X R

1 —12.42 ~0.46
(—2.78)

2 —1277  —15.02 0.02
(—2.86) (—3.36)

3 —12.98 —1476  9.13 0.16
(—2.91) (-3.31) (2.04)

4 —13.02 -1523 789  —17.32 0.46
(—2.92) (-3.41) (L77) (—3.87)

5 —13.02 —1523 7.90 —17.30 0.74 0.46
(—2.92) (-3.41) (1.77) (-3.87) (0.17)

6 —13.04 —1497 822 -1692 0.74 —13.31 0.55

(—2.92) (—3.36) (1.84) (—3.78) (0.17) (—2.97)
7 —1311 —1477 807 —1656 073 —13.01 1432  0.62
(-2.94) (-3.31) (1.81) (-3.70) (0.16) (—2.91) (3.20)
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Table 6: APT model: OLS factor risk premia estimates across categories
This table reports the factor risk price estimates for the APT seven-factor model. The common factors are
estimated from APCA applied to 278 equity portfolios. The empirical method is the two-step regression
approach where the second step consists of an OLS cross-sectional regression of average portfolio excess
returns on factor betas. The testing assets are combinations of 28 different portfolios sorts that correspond
to the categories defined in Table 1. For example, the value-growth category contains the BM, DUR, CFP,
EP, and REV deciles. See Table 1 for a description of the different portfolio sorts and categories. A; denotes
the risk price estimate (in %) for the jth common factor (F}). Below the risk price estimates are displayed
t-statistics based on Shanken’s standard errors (in parentheses). The column labeled R%; s denotes the
cross-sectional OLS R2. The sample is 1972:01-2012:12. Underlined and bold t-ratios denote statistical

significance at the 5% and 1% levels, respectively.

A1 A2 A3 A4 A5 A6 A7 R%, s
Panel A: Value-growth
—-13.21  —13.00 2.30 —23.51 3.65 —8.81 14.45 0.89

(-2.95) (—2.72) (0.43) (-2.86) (0.47) (—1.53)  (2.29)

Panel B: Momentum
—12.68 —4.75 10.49 —9.33 6.04 —25.55 11.38 0.74
(—2.84) (-0.87) (2.04) (—1.85) (1.02) (-2.67) (1.48)

Panel C: Profitability
—12.88 —12.92  18.99 —9.08 1.69 —8.90 4.92 0.75
(—2.88) (—2.23) (3.49) (-1.23) (0.19) (—0.98) (0.68)

Panel D: Investment
—-12.80 —10.24 13.12  —24.17 —5.22 —17.40 12.88 0.62
(—2.87) (=2.16) (2.50) (—3.87) (—1.08) (—3.46) (2.14)

Panel E: Intangibles
—12.74 —5.06 13.37  —28.40 13.17 —16.35 —0.29 0.80
(-2.80) (—0.54) (2.08) (-2.72) (1.72) (—1.28) (—0.03)
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Table 7: APT model: GLS factor risk premia estimates

This table reports the factor risk price estimates for the APT seven-factor model (and corresponding nested
models). The common factors are estimated from APCA applied to 278 equity portfolios. The empirical
method is the two-step regression approach where the second step consists of an GLS cross-sectional regres-
sion of average portfolio excess returns on factor betas. The testing assets represent 278 portfolios associated
with 28 portfolio sorts. See Table 1 for a description of the different portfolio sorts. A; denotes the risk price
estimate (in %) for the jth common factor (F;). Below the risk price estimates are displayed t-statistics
based on Shanken’s standard errors (in parentheses). The column labeled R%; ¢ denotes the cross-sectional
GLS R2?. The sample is 1972:01-2012:12. Underlined and bold ¢-ratios denote statistical significance at the
5% and 1% levels, respectively.

A1 X2 A3 A A5 X6 A R

1 —1272 ~0.06
(—2.85)

2 —12.73  —14.30 1.00
(-2.85) (—3.21)

3 —1273 —1430 753 1.00
(-2.86) (—3.21) (1.69)

4 —1273  —1431 753  —16.98 1.00
(—2.86) (—3.21) (1.69) (—3.81)

5 —1273 —1431 753  —16.98  0.68 1.00
(-2.86) (—3.21) (1.69) (—3.81) (0.15)

6 —12.73 —1431 753 —16.98 0.68 —12.88 1.00

(—2.86) (—3.21) (1.69) (—3.81) (0.15) (—2.89)
7 —1274 —1431 7.53  —16.98 068 —12.88 13.79  1.00
(-2.86) (—3.21) (1.69) (-3.81) (0.15) (—2.89) (3.10)
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Table 8: APT model: GLS factor risk premia estimates across categories
This table reports the factor risk price estimates for the APT seven-factor model. The common factors are

estimated from APCA applied to 278 equity portfolios. The empirical method is the two-step regression

approach where the second step consists of an GLS cross-sectional regression of average portfolio excess

returns on factor betas. The testing assets are combinations of 28 different portfolios sorts that correspond

to the categories defined in Table 1. For example, the value-growth category contains the BM, DUR, CFP,

EP, and REV deciles. See Table 1 for a description of the different portfolio sorts and categories. A; denotes

the risk price estimate (in %) for the jth common factor (F}). Below the risk price estimates are displayed

t-statistics based on Shanken’s standard errors (in parentheses). The column labeled R%; 4 denotes the
cross-sectional GLS R2?. The sample is 1972:01-2012:12. Underlined and bold t-ratios denote statistical

significance at the 5% and 1% levels, respectively.

A1 A2 A3 A4 As A6 A7 R, s
Panel A: Value-growth
—12.88  —12.57 3.39 —25.53 6.83 —8.77 16.27 0.91
(—2.88) (-2.70) (0.67) (—3.38) (1.08) (—1.63) (2.83)
Panel B: Momentum
—12.65 —6.17 11.08 —9.78 4.53 —12.83 7.49 0.77
(-2.83) (—1.21) (2.24) (—2.04) (0.83) (—1.64) (1.08)
Panel C: Profitability
—12.91 —12.81 16.43 —8.46 5.13 —14.20 2.21 0.68
(-2.89) (—-2.32) (3.16) (—1.28) (0.65) (—1.83) (0.33)
Panel D: Investment
—12.57  —12.65 9.97 —20.16 —3.69 —14.53 7.29 0.70
(—2.82) (-2.76) (2.07) (-3.79) (—0.80) (-3.09) (1.42)
Panel E: Intangibles
—12.33 —1.64 13.90  —21.27 14.73 —15.15 —5.60 0.66
(-2.72)  (=0.18) (227) (=2.21) (L99) (-1.26) (—0.51)
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Table 9: Descriptive statistics for equity factors
This table reports descriptive statistics for the equity factors from alternative fac-
tor models. RM, SMB/SMB*, HML/HML* UMD, and LIQ denote the mar-
ket, size, value, momentum, and liquidity factors, respectively. ME, IA, and
ROFE represent the Hou-Xue-Zhang size, investment, and profitability factors, respec-
tively,.  RMW and CMA denote the Fama-French profitability and investment factors.
The sample is 1972:01-2013:12. ¢ designates the first-order autocorrelation coefficient.

Mean (%) Stdev. (%) Min. (%) Max. (%) ¢

RM 0.53 4.61 —23.24 16.10 0.08
SMB 0.20 3.13 —-16.39 22.02 0.01
HML 0.39 3.01 —12.68 13.83 0.15
UMD 0.71 4.46 —34.72 18.39 0.07
LIQ 0.43 3.57 —10.14 21.01 0.09

ME 0.31 3.14 —14.45 22.41 0.03

IA 0.44 1.87 —-7.13 9.41 0.06
ROE 0.57 2.62 —13.85 10.39 0.10
SMB* 0.23 3.07 —15.26 19.05 0.03
HML* 0.40 3.00 —12.61 13.88 0.15
RMW 0.29 2.25 —17.60 12.24 0.18
CMA 0.37 1.96 —6.76 8.93 0.14
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Table 11: Correlations between PCA and equity factors
This table reports pairwise correlations between the estimated PCA common factors (Fj) and
equity factors. RM, SMB/SMB*, HML/HML*, UMD, and LIQ denote the market, size,
value, momentum, and liquidity factors, respectively. MFE, IA, and ROF represent the Hou-
Xue-Zhang size, investment, and profitability factors, respectively. RMW and CMA de-
note the Fama-French profitability and investment factors. The sample is 1972:01-2013:12.

Fy Fy F3 Fy Fs Fg Fr
RM —0.99 0.04 0.01 0.01 —0.02 -—-0.01 0.02
SMB —0.28 0.22 —0.59 -0.19 0.40 —0.22 —0.08
HML 0.30 -0.79 -0.18 0.01 —0.01 —-0.03 0.22
UMD 0.15 0.13 0.40 —0.80 0.09 —0.05 0.06
LIQ 0.02 —-0.06 —-0.10 -0.03 -—0.03 0.14 0.12
ME —0.25 0.06 —0.56 —0.22 0.49 —-0.22 -0.07
IA 0.35 —0.65 0.03 -0.0v -0.11 -0.37 -0.01
ROE 0.17 —0.02 0.76 —0.20 0.26 0.09 —0.11
SMB* -0.26 0.10 —0.61 —-0.19 0.45 —0.20 —-0.09
HML* 0.30 —-0.79 -0.18 0.01 —0.01 -0.03 0.22
RMW 0.21 —0.25 0.59 0.19 0.33 0.22 0.00
CMA 0.37 -0.62 -0.11 -0.10 -0.13 -0.42 -0.01
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Table 12: Regressions of equity factors onto PCA factors
This table reports results for multiple regressions of equity factors onto the estimated PCA common
factors (F}) and equity factors. RM, SMB/SMB*, HML/HML*, UMD, and LIQ denote the
market, size, value, momentum, and liquidity factors, respectively. M E, I A, and ROF represent
the Hou-Xue-Zhang size, investment, and profitability factors, respectively. RMW and CMA
denote the Fama-French profitability and investment factors. The first line associated with each
factor reports the slope estimates, while the second line displays heteroskedasticity-robust t-ratios
(in parentheses). R? denotes the coefficient of determination. The sample is 1972:01-2013:12.

Bolded and underlined ¢-ratios denote statistical significance at the 1% and 5% levels, respectively.

F I 2 I F; Fy F R?
RM —0.046 0.002 0.000 0.000  —0.00I  —0.000  0.00L  0.99
(-166.03)  (5.32) (1.12) (1.05)  (—3.54) (—0.88)  (3.03)
SMB  —0.009 0.007 —0.018  —0.006  0.012  —0.007  —0.003 0.72
(-10.46)  (6.33) (—19.96) (-5.55) (15.44) (-7.64) (—2.91)
HML 0.009 —0.024  —0.005 0.000  —0.000  —0.001  0.007 0.81
(11.75)  (-27.33) (—6.54)  (0.45)  (—0.67) (—1.05)  (9.99)
UMD 0.007 0.006 0.018 —-0.036  0.004  —0.002  0.003 0.86
(6.76) (4.51)  (15.05) (—34.88) (3.47) (=243)  (2.62)
LIQ 0.001 —-0.002  —0.004  —0.001  —0.001  0.005 0.004  0.05
(0.32) (—0.95)  (~1.69)  (—0.70) (—0.54)  (2.96)  (2.27)
ME —0.008 0.002 —0.018  —0.007  0.015  —0.007  —0.002 0.72
(—9.74) (146)  (-18.09) (-559) (18.37) (-6.77) (—2.41)
IA 0.007 —0.012 0.000 —-0.001  —0.002  —0.007  —0.000 0.70
(11.88)  (—21.61)  (0.59) (—1.41)  (-3.65) (—12.64) (—0.22)
ROE 0.005 —0.001 0.020 —0.005  0.007 0.002  —0.003 0.74
(6.22) (-0.62)  (26.36) (—5.97) (8.01)  (3.49) (—3.83)
SMB*  —0.008 0.003 —0.019  —0.006  0.014  —0.006  —0.003 0.73
(—9.89) (2.95)  (-22.50) (-5.95) (17.83) (-7.23) (—3.20)
HML*  0.009 —0.024  —0.005 0.000  —0.000  —0.001  0.007  0.81
(11.78)  (—27.47) (-6.54)  (0.43)  (—0.66) (—1.04) (10.02)
RMW 0.005 —0.006 0.013 0.004 0.007 0.005 0.000  0.65
(7.03) (-5.26) (13.64)  (4.58)  (8.48)  (6.38) (0.15)
CMA 0.007 —0.012  —0.002  —0.002  —0.003  —0.008  —0.000 0.75

(14.66)  (—17.29) (—3.17) (-2.98) (—4.38) (—-15.95) (—0.30)

40



(cce)  (ve1) (20°0) (zLT)

G00 120 ¥¢0 910 T0°0 960 9
(81°¢) (62°1) (¢z'1) (87°0) (99°2)

11°0 ¥¢0 ¢ce0 910 61°0 80°0 Geo q
(09z) (86T) (291) (8L°2)

6¢°0 cvo Geo0 ¢e0 Gco L6°0 ¥
F0'1-) (6572) (81°T-) (88°2)

¢e0— €00 8¢'0— L€°0 0¢'0— 090 ¢
(ze'e) (¢Se) (Te0-) (88°2)

770 67°0 040 6€°0 G0°0— 090 4
(€€2) (8¢'1-) (¥8°2)

91'0— ¢00 Geo0 ¢¢'0— 650 !

,w@ mqm@ VDY — MWHy  HO0dy viIy Ny @34 anny EEI,«\@EI,« *ME,@«\mEm,« Wy

"AToA1309dS01 ‘S[OAD] YT PUR %G OU) Je 9OURIYIUSIS [BIIPSIFR)S 9J0UID SOIpel-} P[O] pUe POUIIopU() gT:¢10g-T0:¢L6T St opdures oyf, -~
POUIRISTOD [RUOI}IOS-SSOID DY) ST 23] O[IYM 3] STTO [RUOI09S-55010 91} sejouap STy pajoqre] umm[oo oy, *(sesoyjusred Ur) S10110 PIRPUR)S S, USYURYS
U0 poaseq sorsiyr)s- poke[dsip oare sojemirgse oolId HSLI oY) MO[R¢ SI0JOR] JUSUIISOAUL pur A[iqeigord ypuar-ewe, o) I0J s9jeu)se aotid YSLI o)
aj0uep VNOY pue MNTy -Alparposedsar ‘s1ojoey Aiqeigord pue ‘JUuautI)soAul ‘OzIs SurYZ-oNY-NOH o) [IIM pajeIdosse soorid ysul o) jussordor Oy
pue ‘VIy ‘dNy -fpargoadsal ‘s109oej Aypmbi pue ‘WNIULTION ‘onfea ‘ozis ‘joyIeur o1} 10j (O ur) sojemrise 90tid Ysi1 a1y ajouep OITy pue ‘dNy
STWHY [TIWHY C«d NSy JENSy ‘WY 1108 o1[ojyiod Jualefip oY) Jo uordiiosep ® I0J T 9[qR], 90§ s1I0s orojaiod gz [im pajerdosse sorojyiod )7
Juosordol sjosse SUI)so) oY, "Se19q I010B] UO SIUINGOI SS90X0 O1[0])10d oFrIoAR JO UOISSOIZDI [RUOIFIVS-SSOIO GrT() UR JO SISISU0D do)s PU0des o) oIom

yoroidde uorsseror dogs-om) o1y ST poyjewr [eostriduie o], "S[epour Iojoejiynu [esrridure oY) 10} sojeurryse 9ouid YsLI 1030€] oY) syrodar a[qes SIyJ,

sojewryse erweld ySuI 10300] Q7O :sEpow [eoudwy e 9[qe],

41



(rre) (01 (92°1) (7%3

LT0  8ST0 11°0 8T°0 960 FAd
(ete) (01) (99°2) (gz'1) (¥L2)
Te0 820 110 LE0 8T°0 960 GAd
(912) (82T) (gL71) (¥L2T)

9T°0 920  ¥E0 G20 960  TZXH
(10'1) (g2'2) (00°T) (92°2)

T°0 61°0 €0 Y10 150  ¥Sd
(60°€) (08°2) (€0°1) (LL°2)

6£°0 z9°0 6€°0 ST'0 LG50 40
(LL2) (10'1) (L2T)

LT0 8€°0 710 50  edd
,m:ﬁwm «Q&D/\ \SEZ.T« @Omf« 4\~< NSN/\ ®~w~< Q§b< *QE:&/\\QE:.N/\ *m:%m;«\mw,?@/\ ~\</\

"AToAT109dS0I ‘S[9Ad] O] PUR %G 9} 1@ 90URIYIUSIS [RIIISIJRIS 910U SOIIRI-] P[O(
pue peurepun ‘gl:g10g-T0:¢L6T St o[dures oy, ",y SO [RUOIDES-ss010 oY) sejousp 721 pefaqel umwmnoo oy ], (seserjusred UI) SIOLID pIepue)s
S, UaYURYG UO Pase( SO1)SI)e)S-7 PoAR[dSID a1e s9)RmIss 90LId SLI 9} MO[eg "SI0J0R] JUSUI)SOAUT pue AN[iqe)gord yousif-euwre, o) I0] sejeun)se aotid
YSLI 97} 9j0uep VNOY pue MNHY -A[oA130adsor ‘s1090€] A)[Iqe)gord pue ‘JUoTI)SOAUI ‘9ZIS SURYYZ-oNY -NOY oY) 1M pajeIoosse sootid sLI o) Juaserdol
Fody pue ‘VIy ‘dNy “A[oA1300dsa1 ‘s1090e] A}IPIMbI] pue ‘WNUSWOW ‘OneA ‘9zIs ‘jaxIeut o) I10j (9 ul) sejeuryso 9ouid YsuI oty ajouap OITy pue
Ay <TIWHy /TIWHy =8NSy [dINSy ‘Y *s1108 0110J310d JUaIofIp o1} Jo uorjdLIosop ®© I0] | o[qR], 99§ "s110s Orl[0j110d |7 Im Pajerdosse sorjojyiod
Q1. Yuesaxdal sjasse JUI1)S9) 9T, "SeIa( I0J0R] UO SIINJAI SS90Xd 01[0J110d 9FRISAR JO UOISSOISAT [RUOIID9S-SSOID §TX) UR JO $)SISU0D do)s PU0dss oY) aIoym

yoeoidde uorsserdar dejs-omy o) St poyjewt [eoudwe oy ], S[epow I0joejrynuu [estirdue o) I0j sojeurl)se 9dLId IS 1030v] oy} sitodal s[qey) STy T,

sojewso vrwold YSLI 1030v] QrTY) :s[epou [eorridwy T 9[qR],

42



Table 15: Anomalies and empirical factors
This table reports R? estimates from multiple regressions of return spreads onto factors associated
with alternative multifactor models. The “high-minus-low” spreads in returns are associated with
28 market anomalies. See Table 1 for a description of the different portfolio sorts. The models
are the Carhart four-factor model (C4), Hou-Xue-Zhang four-factor model (HXZ4), Fama-French
five-factor model (FF5), and a restricted version of FF5 (FF4). The sample is 1972:01-2013:12.

C4 HXZ4 FF5 FF4

BM 069 047 072 047
DUR 051 021 053 0.21
CFP 059 024 060 0.26
EP 0.56 020 0.59 0.23
REV 045 052 050 0.46
MOM 086 0.28 0.07 0.03
SUE 0.14 0.19 0.06 0.04
ABR 0.13 0.06 0.04 0.02
IM 0.62 0.18 0.04 0.02
ABR* 0.23 0.07 0.06 0.05
ROE 043 078 0.63 0.62
GPA 0.09 018 036 0.27
NEI 033 043 034 0.27
RS 0.28 033 027 0.19
1A 034 052 0.52 0.51
ACI  0.11 0.08 0.08 0.06
NSI 028 033 045 0.44
CEI 057 053 062 0.57
PIA  0.13 027 031 0.31
IG 0.16 029 0.25 0.25
IvC 0.09 018 0.22 0.22
IVG 019 033 030 0.30
NOA 0.08 0.00 0.11 0.02
OA 0.03 0.10 0.10 0.10
POA 027 033 035 0.34
PTA 028 034 035 0.34
OCA 0.17 028 0.22 0.20
OL 0.02 015 0.24 0.24
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Table 16: Augmented empirical models: OLS factor risk premia estimates
This table reports the factor risk price estimates for the augmented empirical multifactor models with seven
factors each. The empirical method is the two-step regression approach where the second step consists of
an OLS cross-sectional regression of average portfolio excess returns on factor betas. The testing assets
represent 278 portfolios associated with 28 portfolio sorts. See Table 1 for a description of the different
portfolio sorts. Ans, AsmB/AsmBr, Agmn/AamL+, and Ayap denote the risk price estimates (in %) for
the market, size, value, and momentum factors, respectively. Aysg, Ara, and Arog represent the risk prices
associated with the Hou-Xue-Zhang size, investment, and profitability factors, respectively. Arpw and
Ao 4 denote the risk price estimates for the Fama-French profitability and investment factors. Agpa, Aor,
AOAs AABR; ANOA, AacT, and Agg denote the risk prices for factors (long-short portfolios) associated with
the GPA, OL, OA, ABR, NOA, ACI, and RS anomalies, respectively. Below the risk price estimates are
displayed t-statistics based on Shanken’s standard errors (in parentheses). The column labeled R% s denotes
the cross-sectional OLS R? while RZ is the cross-sectional constrained R?. The sample is 1972:01-2012:12.

Underlined and bold ¢-ratios denote statistical significance at the 5% and 1% levels, respectively.

Panel A: C4
AM ASMB  AHML AUMD AGPA Aor Xoa R:L; s RZ
0.59 —0.01 0.46 0.64 0.26 0.54 0.44 0.61 0.57

(2.84) (—0.09) (3.00) (3.04) (1.49) (2.76) (2.58)

Panel B: HXZ4
A AME Ara AROE  AABR oL Avoa R3¢ RZ
0.59 0.18 0.39 0.27 0.70 0.38 0.34 0.58 0.43
(2.84) (1.10) (3.80) (L98) (3.64) (1.85) (1.94)

Panel C: FF5
Am AsvB*  AHML* ARMW Acma  Aaci MaBr  Rbps R
0.58 0.06 0.33 0.10 0.26 0.51 0.86 0.60 0.47

(2.80) (0.37) (2.18) (0.83) (2.55) (2.75) (3.90)

Panel D: FF4
A AsMB*  ARMW  AcmaA  Anoa ARS Mpr R s RZ
0.56 0.14 0.12 0.35 0.40 —0.00 0.85 0.59 0.50
(2.72)  (0.87)  (L01) (3.42) (241) (—0.01) (3.79)
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Table 17: Augmented empirical models: GLS factor risk premia estimates
This table reports the factor risk price estimates for the augmented empirical multifactor models with seven
factors each. The empirical method is the two-step regression approach where the second step consists of
an GLS cross-sectional regression of average portfolio excess returns on factor betas. The testing assets
represent 278 portfolios associated with 28 portfolio sorts. See Table 1 for a description of the different
portfolio sorts. Ans, AsmB/AsmBr, Agmn/AamL+, and Ayap denote the risk price estimates (in %) for
the market, size, value, and momentum factors, respectively. Aysg, Ara, and Arog represent the risk prices
associated with the Hou-Xue-Zhang size, investment, and profitability factors, respectively. Arpw and
Ao 4 denote the risk price estimates for the Fama-French profitability and investment factors. Agpa, Aor,
AOAs AABR; ANOA, AacT, and Agg denote the risk prices for factors (long-short portfolios) associated with
the GPA, OL, OA, ABR, NOA, ACI, and RS anomalies, respectively. Below the risk price estimates are
displayed t-statistics based on Shanken’s standard errors (in parentheses). The column labeled Ré s denotes
the cross-sectional GLS R?. The sample is 1972:01-2012:12. Underlined and bold t-ratios denote statistical
significance at the 5% and 1% levels, respectively.

Panel A: C4
Am AsmB AHML  AUMD AGPA  AoL Moa Riig
0.74 —0.67 3.61 0.45 0.34 0.37 0.27 1.00

(3.62) (—4.82) (26.88) (2.19) (2.29) (2.17) (1.94)
Panel B: HXZ4

A AME Ara ArOE  AaBr  AorL  Anoa Rigg
0.65 0.03 0.44 0.25 0.73 0.39 0.39 1.00
(3.18)  (0.18)  (5.13) (209) (5.15) (2.27) (2.80)
Panel C: FF5
Am AsvBs  AHML* ARMw AcmA  Aacr Aapr  Ripg
0.56 0.35 0.39 0.11 0.30 0.26 0.73 1.00

(2.71)  (246)  (2.81) (1.08) (3.31) (1.84) (5.15)
Panel D: FF4
Am AsvBs  ARMW  AcMA  ANoA  Ars  Aapr  Rirg
0.67 0.17 0.01 0.11 0.39 0.30 0.73 1.00
(3.28) (1200  (0.08) (1.28) (2.81) (1.97) (5.15)
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